Credible intervals for nanoparticle characteristics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Credible Intervals for Nanoparticle Characteristics

Solving the inverse problem of nanoparticle characterization has the potential to advance science and benefit society. While considerable progress has been made within a framework based on the scattering of surface plasmon-polaritons, an aspect not heretofore considered is the quantification of uncertainty in the estimation of a nanoparticle characteristic. Therefore, the present article offers...

متن کامل

Bayesian interpretation and credible intervals for regularised linear wavelet estimators

We first consider a Bayesian formalism in the wavelet domain that gives rise to the regularised linear wavelet estimator obtained in the standard nonparametric regression setting when the unknown response function belongs to a Sobolev space with non-integer regularity s > 1/2. We then use the posterior distribution of the wavelets coefficients to construct pointwise Bayesian credible intervals ...

متن کامل

Analysis of regression confidence intervals and Bayesian credible intervals for uncertainty quantification

[1] Confidence intervals based on classical regression theories augmented to include prior information and credible intervals based on Bayesian theories are conceptually different ways to quantify parametric and predictive uncertainties. Because both confidence and credible intervals are used in environmental modeling, we seek to understand their differences and similarities. This is of interes...

متن کامل

Monte Carlo Estimation of Bayesian Credible and HPD Intervals

This paper considers how to estimate Bayesian credible and highest probability density (HPD) intervals for parameters of interest and provides a simple Monte Carlo approach to approximate these Bayesian intervals when a sample of the relevant parameters can be generated from their respective marginal posterior distribution using a Markov chain Monte Carlo (MCMC) sampling algorithm. We also deve...

متن کامل

MCMC Generated Bayesian Credible Intervals in Hierarchical Models

Under a Bayesian approach to a hierarchical model interest often lies in summarizing the posterior distribution of a parameter in order to enable easy comparison across prior structures This can be done for example through quantile or interval estimation When using an MCMC algorithm such as the Gibbs sampler to generate a sample from the posterior of interest calcu lations are often easier when...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Quantitative Spectroscopy and Radiative Transfer

سال: 2012

ISSN: 0022-4073

DOI: 10.1016/j.jqsrt.2011.10.006